EB8

Les inverses.

ightharpoonup L'inverse d'un entier non nul b est la fraction $\frac{1}{b}$: L'inverse de 8 est $\frac{1}{8}$.

L'inverse d'une fraction $\frac{a}{b}$ est donc la fraction $\frac{1}{\frac{a}{b}} = 1 \div \frac{a}{b} = \frac{b}{a}$

Donc l'inverse de $\frac{a}{b}$ est $\frac{b}{a}$: l'inverse de $\frac{7}{5}$ est $\frac{5}{7}$

Exercice 1 Ecris l'inverse de chacun des nombres suivants.

5 ; $\frac{3}{4}$; $\frac{1}{6}$; $-\frac{1}{8}$; 0.2 ; $\frac{-5}{7}$; $\frac{3}{-14}$

 \triangleright L'inverse d'un entier non nul b est la fraction $\frac{1}{b}$, donc toute fraction ayant pour dénominateur 1 est l'inverse du nombre qui se trouve au dénominateur.

 $\frac{1}{b}$ est l'inverse de b , de même $\frac{1}{\frac{a}{b}}$ est l'inverse de $\frac{a}{b}$

Exercice 2

Associe chaque nombre de la liste 1 à son inverse dans la liste 2. Exemple : $inv(5) = \frac{1}{5}$

Liste 1: 5; $\frac{1}{19}$; $\frac{27}{28}$; $\frac{5}{6}$; $\frac{1}{\frac{4}{5}}$; $\frac{3}{7}$

Liste 2: $\frac{1}{5}$; $\frac{4}{5}$; $\frac{1}{\frac{1}{\frac{3}{7}}}$; $\frac{18}{15}$; 19; $\frac{28}{27}$

Signe d'une puissance

Rappel : une puissance d'un nombre peut être assimilée à un produit : $7^4 = 7 \times 7 \times 7 \times 7$

- $(-7)^4 = (-7) \times (-7) \times (-7) \times (-7)$ c'est un produit de 4 facteurs négatifs donc $(-7)^4 > 0$
- ightharpoonup L'opposé de 7^4 est $-7^4 = -(7 \times 7 \times 7 \times 7)$ il y a un seul facteur négatif, donc $-7^4 < 0$ Il faut donc faire attention à la présence ou à l'absence de parenthèses.
- L'opposé de $(-4)^3$ est $-(-4)^3$. Puisque $(-4)^3 < 0$ (3 facteurs négatifs), alors $-(-4)^3 > 0$ Dans $-(-4)^3$ il y a les 3 facteurs négatifs de $(-4)^3$ et un signe négatif supplémentaire avant les parenthèses, donc $-(-4)^3 > 0$ car il y a 4 facteurs négatifs.

<u>Exercice 3</u> Trouve le signe de chacune des puissances suivantes en précisant le nombre de facteurs négatifs.

$$-8^5$$
; -8^6 ; $(-5)^4$; $(-6)^7$; $-(-8)^4$; $-(-17)^9$; -9^0 ; $(-12)^0$; $\left(-\frac{7}{9}\right)^7$

Fractions composées

Vue fraction est le quotient du numérateur par le dénominateur : $\frac{a}{b} = a \div b$

De même, pour une fraction composée,
$$\frac{\frac{5}{6}}{\frac{3}{7}} = \frac{5}{6} \div \frac{3}{7} = \frac{5}{6} \times \frac{7}{3} = \frac{35}{18}$$

<u>Exercice 4</u> Ecris les fractions ci-dessous sous la forme la plus simple possible.

$$A = \frac{\frac{5}{6} - \frac{7}{4}}{\frac{28}{12} \times \frac{5}{30}}$$
 On calcule le numérateur $\frac{5}{6} - \frac{7}{4}$ et le dénominateur $\frac{28}{12} \times \frac{5}{30}$ puis on divise les deux résultats.

$$B = \frac{\frac{5}{6}}{\frac{3}{4}} - \frac{\frac{4}{9}}{\frac{8}{3}}$$
 On calcule chacune des deux fractions $\frac{\frac{5}{6}}{\frac{3}{4}}$ et $\frac{\frac{4}{9}}{\frac{8}{3}}$ puis on soustrait les résultats.

$$C = \frac{\frac{7}{4} - \frac{5}{6}}{\frac{1}{\frac{6}{7}} + \frac{2}{9}} \qquad ; \qquad D = \frac{5 \times \left(2 - \frac{17}{3}\right)}{\frac{11}{6} \div 2} \qquad ; \qquad E = \frac{1 + \frac{1}{2}}{\frac{3}{4}} - \frac{1 - \frac{3}{4}}{1 + \frac{1}{4}}$$

$$F = \frac{2 - \frac{9}{4} \times \frac{10}{6}}{\frac{5}{4} - \frac{5}{6}}$$